Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Antimicrob Agents ; 62(4): 106944, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543120

RESUMEN

OBJECTIVES: Nontyphoidal Salmonella (NTS) is a major foodborne pathogen causing from acute gastroenteritis to bacteraemia, particularly in paediatric and elderly patients. Antimicrobial resistance of NTS, especially resistance to extended-spectrum cephalosporins, has emerged over the past decades. METHODS: Thirteen NTS isolates resistant to ceftriaxone or cefotaxime were collected from a teaching hospital in Taipei, and another three from a tertiary hospital, in New Taipei City, Taiwan, from September 2018 to December 2019. Ten other archived isolates from 2000 to 2017 were also obtained. Complete genomes of the 26 isolates were obtained. Serovars, sequence types, resistomes, genetic relatedness, and sequence comparison of plasmids were analyzed. RESULTS: Serogroups B, C2 and E were significantly associated with ampicillin resistance. Over 90% of these 26 isolates are susceptible to carbapenems and colistin. Genomic epidemiology of these isolates shows that blaCMY-2-harbouring isolates in different serovars were prevalent over two decades, presumably resulting from highly mobile IncI1 plasmid harbouring blaCMY-2. One type of the IncI1 plasmids contained a mobile element, IS26, which might be involved in the acquisition of antimicrobial resistance genes. Two emerging serovars, S. Goldcoast ST358 harbouring blaCTX-M-55 on IncHI2 plasmids and S. Anatum ST64 harbouring blaDHA-1 on IncA/C2 plasmids persisted in Taiwan, possibly through the clonal spread. Integration of complete or partial plasmid sequences into host chromosomes or multiplications of the antimicrobial resistance genes also appears to be mediated by IS26, in the two emerging clones. CONCLUSION: The dynamic movement of cephalosporinase genes mediated by IS26 in NTS is of great concern.

2.
Protein Sci ; 32(10): e4749, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37555831

RESUMEN

Protein oligomerization occurs frequently both in vitro and in vivo, with specific functionalities associated with different oligomeric states. The YqiC protein from Salmonella Typhimurium forms a homotrimer through its C-terminal coiled-coil domain, and the protein is closely linked to the colonization and invasion of the bacteria to the host cells. To elucidate the importance of the oligomeric state of YqiC in vivo and its relation with bacterial infection, we mutated crucial residues in YqiC's coiled-coil region and confirmed the loss of trimer formation using chemical crosslinking and size exclusion chromatography coupled with multiple angle light scattering (SEC-MALS) techniques. The yqiC-knockout strain complemented with mutant YqiC showed significantly reduced colonization and invasion of Salmonella to host cells, demonstrating the critical role of YqiC oligomerization in bacterial pathogenesis. Furthermore, we conducted a protein-protein interaction study of YqiC using a pulled-down assay coupled with mass spectrometry analysis to investigate the protein's role in bacterial virulence. The results reveal that YqiC interacts with subunits of Complex II of the electron transport chain (SdhA and SdhB) and the ß-subunit of F0 F1 -ATP synthase. These interactions suggest that YqiC may modulate the energy production of Salmonella and subsequently affect the assembly of crucial virulence factors, such as flagella. Overall, our findings provide new insights into the molecular mechanisms of YqiC's role in S. Typhimurium pathogenesis and suggest potential therapeutic targets for bacterial infections.


Asunto(s)
Proteínas , Salmonella typhimurium , Proteínas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Factores de Virulencia/metabolismo , Proteínas Bacterianas/química
3.
J Microbiol Immunol Infect ; 56(4): 875-879, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37188572

RESUMEN

High-level levofloxacin-resistant group A Streptococcus emerged in Taiwan in 2012. Among the 24 isolates identified, 23 belonged to emm12/ST36, most harbored the same GyrA and ParC mutations and were highly clonal. wgMLST showed them to be closely related to the Hong Kong scarlet fever outbreak strains. Continuous surveillance is warranted.


Asunto(s)
Escarlatina , Infecciones Estreptocócicas , Humanos , Levofloxacino/farmacología , Taiwán/epidemiología , Streptococcus pyogenes , Escarlatina/tratamiento farmacológico , Escarlatina/epidemiología , Hong Kong , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Estreptocócicas/epidemiología , Infecciones Estreptocócicas/tratamiento farmacológico , Farmacorresistencia Bacteriana/genética
4.
Front Cell Infect Microbiol ; 12: 964539, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189355

RESUMEN

In the past decades, due to the high prevalence of the antibiotic-resistant isolates of Acinetobacter baumannii, it has emerged as one of the most troublesome pathogens threatening the global healthcare system. Furthermore, this pathogen has the ability to form biofilms, which is another effective mechanism by which it survives in the presence of antibiotics. However, the clinical impact of biofilm-forming A. baumannii isolates on patients with bacteremia is largely unknown. This retrospective study was conducted at five medical centers in Taiwan over a 9-year period. A total of 252 and 459 patients with bacteremia caused by biofilm- and non-biofilm-forming isolates of A. baumannii, respectively, were enrolled. The clinical demographics, antimicrobial susceptibility, biofilm-forming ability, and patient clinical outcomes were analyzed. The biofilm-forming ability of the isolates was assessed using a microtiter plate assay. Multivariate analysis revealed the higher APACHE II score, shock status, lack of appropriate antimicrobial therapy, and carbapenem resistance of the infected strain were independent risk factors of 28-day mortality in the patients with A. baumannii bacteremia. However, there was no significant difference between the 28-day survival and non-survival groups, in terms of the biofilm forming ability. Compared to the patients infected with non-biofilm-forming isolates, those infected with biofilm-forming isolates had a lower in-hospital mortality rate. Patients with either congestive heart failure, underlying hematological malignancy, or chemotherapy recipients were more likely to become infected with the biofilm-forming isolates. Multivariate analysis showed congestive heart failure was an independent risk factor of infection with biofilm-forming isolates, while those with arterial lines tended to be infected with non-biofilm-forming isolates. There were no significant differences in the sources of infection between the biofilm-forming and non-biofilm-forming isolate groups. Carbapenem susceptibility was also similar between these groups. In conclusion, the patients infected with the biofilm-forming isolates of the A. baumannii exhibited different clinical features than those infected with non-biofilm-forming isolates. The biofilm-forming ability of A. baumannii may also influence the antibiotic susceptibility of its isolates. However, it was not an independent risk factor for a 28-day mortality in the patients with bacteremia.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Bacteriemia , Insuficiencia Cardíaca , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Biopelículas , Carbapenémicos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Estudios Retrospectivos , Factores de Riesgo
5.
Int J Antimicrob Agents ; 60(5-6): 106678, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184015

RESUMEN

OBJECTIVES: Elizabethkingia anophelis is inherently resistant to multiple antibiotics, except minocycline. This study aimed to determine the in vitro and in vivo efficacy of minocycline monotherapy and combination therapy against susceptible strains and the impact of reduced minocycline susceptibility. METHODS: Three clinical isolates and one laboratory-induced mutant with reduced minocycline susceptibility were included. Time-kill and checkerboard assays were used to assess in vitro efficacy and synergy, respectively. Galleria mellonella infection and mouse pneumonia models were used to assess in vivo efficacy, and a mouse thigh infection model was used to determine the bacterial load. RESULTS: Minocycline monotherapy exerted a modest inhibitory effect on three clinical minocycline-susceptible E. anophelis isolates in vitro, but delayed G. mellonella death and improved infected mouse survival; it also significantly reduced the in vivo bacterial load. Minocycline had decreased efficacy on G. mellonella and mice infected by the mutant with reduced minocycline susceptibility. Genome comparison revealed several spontaneous mutations associated with reduced minocycline susceptibility. Among eight antibiotics tested in combination with minocycline, rifampin consistently showed in vitro synergy. The addition of rifampin (1 mg/L) reduced the mutant prevention concentration of minocycline from 2-4 mg/L to < 0.5 mg/L. However, compared with monotherapy, the combination of rifampin and minocycline did not further reduce the bacterial load or improve the survival of G. mellonella or mice. CONCLUSION: Minocycline monotherapy was in vivo effective against susceptible E. anophelis. Reduced minocycline susceptibility due to spontaneous mutation decreased its therapeutic efficacy. In combination with rifampin, it prevented the in vitro emergence of reduced susceptibility but did not provide additional in vivo survival benefit.


Asunto(s)
Flavobacteriaceae , Minociclina , Ratones , Animales , Pruebas de Sensibilidad Microbiana , Minociclina/farmacología , Minociclina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
6.
Bioinformatics ; 38(18): 4286-4292, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35876544

RESUMEN

MOTIVATION: Microbiota analyses have important implications for health and science. These analyses make use of 16S/18S rRNA gene sequencing to identify taxa and predict species diversity. However, most available tools for analyzing microbiota data require adept programming skills and in-depth statistical knowledge for proper implementation. While long-read amplicon sequencing can lead to more accurate taxa predictions and is quickly becoming more common, practitioners have no easily accessible tools with which to perform their analyses. RESULTS: We present MOCHI, a GUI tool for microbiota amplicon sequencing analysis. MOCHI preprocesses sequences, assigns taxonomy, identifies different abundant species and predicts species diversity and function. It takes either taxonomic count table or FASTQ of partial 16S/18S rRNA or full-length 16S rRNA gene as input. It performs analyses in real time and visualizes data in both tabular and graphical formats. AVAILABILITY AND IMPLEMENTATION: MOCHI can be installed to run locally or accessed as a web tool at https://mochi.life.nctu.edu.tw. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiota/genética , Filogenia
7.
Antibiotics (Basel) ; 11(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35625324

RESUMEN

The overuse of antibiotics has resulted in the emergence of antibiotic resistance, not only in bacteria but also in fungi. Streptomyces are known to produce numerous secondary metabolites including clinically useful antibiotics. In this study, we screened for antibiotic-producing actinobacteria from soils in Taipei and discovered a Streptomyces strain SC26 that displayed antimicrobial activities against Gram-positive bacteria and fungi, but the compounds are heat-labile. Upon UV mutagenesis, a late-sporulation mutant SC263 was isolated with the same antibiotic spectrum but increased in thermostability. The nature of the antibiotic is not clear, but its activity was resistant to proteolytic, nucleolytic and pancreatic digestions, and was retained by the 100 kDa membrane during filtration. To gather more information on SC263, the genome was sequenced, which produced three contigs with a total of 8.2 Mb and was assigned to the species of Streptomyces spororaveus based on the average nucleotide identity to the reference species S. spororaveus NBRC 15456.

8.
Carbohydr Polym ; 281: 119035, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35074103

RESUMEN

Chitosan (CS) electrospun nanofiber (ENF) membranes were modified with fucoidan (Fu) and CuS NPs through polyelectrolyte complexation and genipin (GP)-involved cross-linking reaction. The formation of Fu/CS complex and cross-linking of CS with GP increased the acid resistance and reduced the swelling rate of CS ENF, while the covalent conjugation of CuS NPs provided CS ENF with durable Fenton-like catalytic activity. The CuS@ENF composite (ENFC) effectively adsorbed H2O2 and near-infrared (NIR) light, enabling it to kill bacteria by photothermal and photocatalytic bactericidal effects. Fu and copper ions were able to release from the ENFC in a pH-dependent manner, and promoted the alkaline phosphatase activity of osteoblast cells and capillary tube formation of endothelial cells. This study provides a new approach to modify CS ENF with antibacterial and osteoblast differentiation activities, which may be available for bone infection prevention and tissue regeneration.


Asunto(s)
Quitosano , Nanofibras , Antibacterianos/farmacología , Quitosano/farmacología , Cobre , Células Endoteliales , Peróxido de Hidrógeno , Polisacáridos , Ingeniería de Tejidos
9.
J Microbiol Immunol Infect ; 55(2): 257-265, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33875365

RESUMEN

BACKGROUND: Carbapenem-resistant Acinetobacter species have emerged as notorious pathogens causing nosocomial infections. Several phenotypic methods have been developed for detecting carbapenemase production in Enterobacteriaceae. The accuracy of these methods in the prediction of carbapenemase production in Acinetobacter species has not been studied well. METHODS: This retrospective study enrolled adult patients with Acinetobacter bacteremia from four medical centers in Taiwan between 2012 and 2016. Their demographics and clinical outcomes were recorded. The carbapenem susceptibility of the Acinetobacter species was determined using the agar diffusion method. The carbapenemase genes were detected by PCR. Four phenotypic methods, including the modified Hodge test (MHT), modified carbapenem inactivation method (mCIM), Carba NP test, and CarbAcineto NP test were carried out to determine the production of carbapenemase. RESULTS: We analyzed 257 adults who received initial carbapenem monotherapy for the treatment of Acinetobacter bacteremia. Shock within three days of bacteremia and acquisition of carbapenem non-susceptible isolates were independently associated with a higher 14-day and 30-day mortality in patients with Acinetobacter bacteremia. Among the four phenotypic tests for carbapenemase detection, MHT using the imipenem disc displayed the greatest sensitivity (94%; 95% confidence interval [CI], 89-97%) and specificity (81%; 95% CI, 73-88%) for predicting imipenem non-susceptibility. CONCLUSION: Carbapenem non-susceptibility and shock were independent risk factors for mortality in patients with Acinetobacter bacteremia. The MHT could predict the carbapenem susceptibility of Acinetobacter isolates. It is a cheap and quick assay, which could be applied in clinical practice.


Asunto(s)
Acinetobacter , Bacteriemia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Humanos , Imipenem , Pruebas de Sensibilidad Microbiana , Estudios Retrospectivos , beta-Lactamasas/genética
10.
J Microbiol Immunol Infect ; 55(3): 503-526, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34330662

RESUMEN

BACKGROUND: Macrophages play crucial roles in immune responses during the course of schistosomal infections. METHODS: We currently investigated influence of immunocompetent changes in macrophages via microarray-based analysis, mRNA expression analysis, detection of serum cytokines, and subsequent evaluation of the immune phenotypes following the differentiation of infection-induced lymphocytes in a unique T1/T2 double-transgenic mouse model. RESULTS: The gradual upregulation of genes encoding YM1, YM2, and interleukin (IL)-4/IL-13 receptors in infected mice indicated the role of type 2 alternatively activated macrophages (M2, AAMφs) in immune responses after Schistosoma japonicum egg production. FACS analysis showed that surface markers MHC class II (IA/IE) and CD8α+ of the macrophages also exhibited a dramatic change at the various time points before and after egg-production. The transgenic mouse experiments further demonstrated that the shifting of macrophage phenotypes influenced the percentage of helper T (Th)-2 cells, which was observed to be higher than that of Th1 cells, which increased only at 3 and 5 weeks post-infection. The differentiation of effector B cells showed a similar but more significant trend toward type-2 immunity. CONCLUSION: These results suggest that the infection of mice with S. japonicum resulted in a final Th2- and Be2-skewed immune response. This may be due to phenotypic changes in the macrophages. The influence of alternatively activated macrophages was also activated by S. japonicum egg production. This study elucidated the existence of variations in immune mechanisms at the schistosome infection stages.


Asunto(s)
Macrófagos , Esquistosomiasis Japónica , Animales , Inmunidad , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Fenotipo , Esquistosomiasis Japónica/inmunología , Células TH1 , Células Th2
11.
Antibiotics (Basel) ; 10(11)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34827321

RESUMEN

This study analyzed the genetic diversity of ciprofloxacin (CIP) nonsusceptibility and the relationship between two major mechanisms and minimum inhibitory concentrations (MICs) of CIP in nontyphoidal Salmonella (NTS). Chromosomal mutations in quinolone resistance-determining regions (QRDRs) and plasmid-mediated quinolone resistance (PMQR) genes were searched from ResFinder, ARG-ANNOT, and PubMed for designing the sequencing regions in gyrA, gyrB, parC, and parE, and the 13 polymerase chain reactions for PMQR genes. We found that QRDR mutations were detected in gyrA (82.1%), parC (59.0%), and parE (20.5%) but not in gyrB among the 39 isolates. Five of the 13 PMQR genes were identified, including oqxA (28.2%), oqxB (28.2%), qnrS (18.0%), aac(6')-Ib-cr (10.3%), and qnrB (5.1%), which correlated with the MICs of CIP within 0.25-2 µg/mL, and it was found that oxqAB contributed more than qnr genes to increase the MICs. All the isolates contained either QRDR mutations (53.8%), PMQR genes (15.4%), or both (30.8%). QRDR mutations (84.6%) were more commonly detected than PMQR genes (46.2%). QRDR mutation numbers were significantly associated with MICs (p < 0.001). Double mutations in gyrA and parC determined high CIP resistance (MICs ≥ 4 µg/mL). PMQR genes contributed to intermediate to low CIP resistance (MICs 0.25-2 µg/mL), thus providing insights into mechanisms underlying CIP resistance.

12.
Mater Sci Eng C Mater Biol Appl ; 128: 112265, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474824

RESUMEN

Spurred by recent progress in biomaterials and therapeutics, stimulus-responsive strategies that deliver an active substance in temporal-, spatial-, and dose-controlled fashions have become achievable. Implementation of such strategies necessitates the use of bio-safe materials that are sensitive to a specific pathological incitement or that, in response to a precise stimulus, undergo hydrolytic cleavage or a change in biomolecular conformation. An innovative design of polymeric stimulus-responsive systems should controllably release a drug or degrade the drug carrier in response to specific lesion enzymes. Wound healing is a great challenge due to various hidden factors such as pathogenic infections, neurovascular diseases, excessive exudates, lack of an effective therapeutic delivery system, low cell proliferation, and cell migration. In addition, long-term use of antibiotics in chronic wound management can result in side effects and antimicrobial resistance. Novel treatments with antibacterial pharmaceuticals thus vitally need to be developed. Recently, graphene and graphene family members have emerged as shining stars among biomaterials for wound-healing applications due to their excellent bioactive properties, which can overcome limitations of current wound dressings and fulfill wound-healing requirements. Herein, we developed a feasible approach to impregnate graphene oxide (GO) into genipin-crosslinked gelatin (3GO) hydrogels to enzymatically control GO release. The developed hydrogels were characterized by chemical, physical, morphological, and cellular analyses. The results proved that the 3GO1 hydrogel is biocompatible and significantly enhanced the mechanical strength by encapsulating GO. Moreover, the rate of GO release depended on the crosslinking degree and environmental enzyme levels. Enzymatically released GO displayed uniform dispersity, retained its antibacterial activities against Staphylococcus aureus and Pseudomonas aeruginosa through sharp edges and wrapping mechanisms, and promoted human fibroblast migration. This multifunctional hydrogel we developed with antibacterial efficacy is suitable for future application as wound dressings.


Asunto(s)
Grafito , Antibacterianos/farmacología , Vendajes , Humanos , Hidrogeles , Cicatrización de Heridas
13.
Microorganisms ; 9(6)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198665

RESUMEN

Acinetobacter baumannii, a Gram-negative bacterium, is an important nosocomial pathogen. Colistin-resistant A. baumannii is becoming a new concern, since colistin is one of the last-line antibiotics for infections by carbapenem-resistant A. baumannii. From 452 carbapenem-resistant isolates collected in a teaching hospital in Taipei, Taiwan, we identified seven that were resistant to colistin. Carbapenem resistance in these isolates is attributed to the presence of carbapenemase gene blaOXA-23 in their genomes. Colistin resistance is presumably conferred by mutations in the sensor kinase domain of PmrB found in these isolates, which are known to result in modification of colistin target lipid A via the PmrB-PmrA-PmrC signal transduction pathway. Overexpression of pmrC, eptA, and naxD was observed in all seven isolates. Colistin resistance mediated by pmrB mutations has never been reported in Taiwan. One of the seven isolates contained three mutations in lpxD and exhibited an altered lipopolysaccharide profile, which may contribute to its colistin resistance. No significant difference in growth rates was observed between the isolates and the reference strain, suggesting no fitness cost of colistin resistance. Biofilm formation abilities of the isolates were lower than that of the reference. Interestingly, one of the isolates was heteroresistant to colistin. Four of the isolates were significantly more virulent to wax moth larvae than the reference.

14.
J Immunol Res ; 2021: 6654617, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34041302

RESUMEN

During the acute febrile phase of dengue virus (DENV) infection, viremia can cause severe systemic immune responses accompanied by hematologic disorders. This study investigated the potential induction and mechanism of the cytopathic effects of DENV on peripheral blood cells ex vivo. At one day postinfection, there was viral nonstructural protein NS1 but no further virus replication measured in the whole blood culture. Notably, DENV exposure caused significant vacuolization in monocytic phagocytes. With a minor change in the complete blood cell count, except for a minor increase in neutrophils and a significant decrease in monocytes, the immune profiling assay identified several changes, particularly a significant reduction in CD14-positive monocytes as well as CD11c-positive dendritic cells. Abnormal production of TNF-α was highly associated with the induction of vacuolization. Manipulating TNF-α expression resulted in cytopathogenic effects. These results demonstrate the potential hematological damage caused by ex vivo DENV-induced TNF-α.


Asunto(s)
Dengue/inmunología , Monocitos/patología , Síndrome de Respuesta Inflamatoria Sistémica/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Viremia/inmunología , Aedes , Animales , Recuento de Células Sanguíneas , Línea Celular , Técnicas de Cocultivo , Cricetinae , Dengue/sangre , Dengue/complicaciones , Dengue/virología , Virus del Dengue/inmunología , Voluntarios Sanos , Humanos , Monocitos/inmunología , Cultivo Primario de Células , Síndrome de Respuesta Inflamatoria Sistémica/sangre , Síndrome de Respuesta Inflamatoria Sistémica/virología , Viremia/sangre , Viremia/complicaciones , Viremia/virología
15.
Medicine (Baltimore) ; 100(20): e26061, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34011124

RESUMEN

BACKGROUND: The aim of this study is to evaluate the alterations in bone mineral density and other surrogate markers for osteoporosis in obese patients with type 2 diabetes mellitus (T2DM) who received Roux-en-Y gastric bypass (RYGB) versus medical treatment as control. METHODS: We searched 4 electronic databases and reference lists of relevant studies for eligible research published before December, 2019. After quality assessment, eligible studies were synthesized for relevant outcomes, including lumbar spine bone mineral density (L-spine BMD) change, total hip BMD change, osteocalcin level, C-terminal telopeptide level, and parathyroid hormone level. RESULTS: Three randomized clinical trials and 2 observational studies concerning 307 total obese T2DM patients were included. Follow-up ranged from 12 to 60 months. Patients underwent RYGB surgery were associated with both higher L-spine BMD loss (mean difference: -2.90, 95% CI: -2.99∼-2.81, P < .00001) and total hip BMD loss (mean difference: -5.81, 95% CI: -9.22∼-2.40, P = .0008). As to biochemical markers of bone metabolism, we found significantly higher osteocalcin level in medical treatment (control) group compared with RYGB group (mean difference: 11.16, 95% CI: 8.57-13.75, P < .00001). However, higher C-terminal telopeptide level and parathyroid hormone level were noted in medical treatment group (control) compared with RYGB group (mean difference: 0.29, 95% CI: 0.11-0.48, P = .002; mean difference: 1.56, 95% CI: 0.84-2.27, P < .0001). CONCLUSIONS: RYGB surgery is associated with negative impact on bone metabolism and increase the risk of osteoporosis in obese patients with T2DM. We suggest that clinicians acknowledge the adverse effects of surgery and keep monitoring bone mineral components in post-RYGB populations. Further studies regarding the optimal amount of perioperative and postsurgical supplementation should be evaluated.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/sangre , Obesidad/cirugía , Osteoporosis/sangre , Biomarcadores/sangre , Densidad Ósea , Humanos , Obesidad/complicaciones , Osteoporosis/complicaciones , Osteoporosis/diagnóstico
16.
Life Sci ; 277: 119438, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33798549

RESUMEN

AIMS: Immune checkpoints regulate immunity to prevent autoimmunity and protect the host from damage during pathogenic infection. They also participate in subverting immune surveillance and promote antitumor immunity in cancers. Although immunotherapy improves clinical outcomes, not all cancer patients experience expected responses after therapy. Hence, it would be meaningful to explore crucial immune checkpoints in cancers for future immunotherapies. METHODS AND KEY FINDINGS: By analyzing pan-cancer data in The Cancer Genome Atlas (TCGA), cluster of differentiation 276 (CD276), also known as B7H3, was found to be a risk gene in several cancers. A positive correlation existed between CD276 and natural killer (NK) cell infiltration. Overexpression of CD276 attenuated NK cell-mediated cell killing. Furthermore, CD276 levels showed a significant negative association with microRNA (miR)-29c-3p. Overexpression of miR-29c-3p rescued CD276-reduced NK cell cytotoxicity. According to gene set enrichment analyses, CD276-associated genes were found to be enriched in genes that targeted Myc. A negative correlation existed between miR-29 expression and Myc activity. CD276 enhanced Myc phosphorylation levels while suppressing miR-29c-3p expression. In contrast, miR-29c-3p inhibited CD276 expression, leading to reduced Myc activity. Myc suppressed miR-29c-3p expression while promoting CD276 upregulation. SIGNIFICANCE: These findings suggest that a negative regulatory loop among CD276, Myc, and miR-29c-3p influences cancer cells against NK cell cytotoxicity.


Asunto(s)
Antígenos B7/metabolismo , Citotoxicidad Inmunológica/inmunología , Regulación Neoplásica de la Expresión Génica , Células Asesinas Naturales/inmunología , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Apoptosis , Antígenos B7/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Humanos , MicroARNs/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Células Tumorales Cultivadas
17.
Microorganisms ; 9(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803559

RESUMEN

The need for new antibiotics is increasing due to their overuse, and antibiotic resistance has become one of the major threats worldwide to public health, food safety, and clinical treatment. In this study, we describe an actinobacterial isolate, YX44, which belongs to the genus Streptomyces. This Streptomyces was isolated from a drinking pipe located in Osaka, Japan, and has the ability to inhibit Gram-positive bacteria, Gram-negative bacteria, and various fungi. YX44 fermentation broth shows strong activity against Escherichia coli and Staphylococcus aureus, as well as also inhibiting clinical isolates of multidrug-resistant Staphylococcus aureus. The YX44 antibacterial substances in the broth are relatively heat-stable, show high stability from the pH range 1 to 11, and have good solubility in both organic and non-organic solvents. Size-exclusion chromatography revealed that the YX44 antibacterial compounds are less than 1000 Da in size. LC-MS was able to identify three possible candidate molecules with molecular weights of 308, 365, 460, and 653 g/mol; none of these sizes correspond to any well-known antibiotics. Our results show that Streptomyces sp. YX44 seems to produce a number of novel antibiotics with high pH stability and good solubility that have significant activity against S. aureus, including multidrug-resistant strains.

18.
Cancers (Basel) ; 13(9)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33924966

RESUMEN

Background: Heterogeneous features of lung adenocarcinoma (LUAD) are used to stratify patients into terminal respiratory unit (TRU), proximal-proliferative (PP), and proximal-inflammatory (PI) subtypes. A more-accurate subtype classification would be helpful for future personalized medicine. However, these stratifications are based on genes with variant expression levels without considering their tumor-promoting roles. We attempted to identify cancer essential genes for LUAD stratification and their clinical and biological differences. Methods: Essential genes in LUAD were identified using genome-scale CRIPSR screening of RNA sequencing data from Project Achilles and The Cancer Genome Atlas (TCGA). Patients were stratified using consensus clustering. Survival outcomes, genomic alterations, signaling activities, and immune profiles within clusters were investigated using other independent cohorts. Findings: Thirty-six genes were identified as essential to LUAD, and there were used for stratification. Essential gene-classified clusters exhibited distinct survival rates and proliferation signatures across six cohorts. The cluster with the worst prognosis exhibited TP53 mutations, high E2F target activities, and high tumor mutation burdens, and harbored tumors vulnerable to topoisomerase I and poly(ADP ribose) polymerase inhibitors. TRU-type patients could be divided into clinically and molecularly different subgroups based on these essential genes. Conclusions: Our study showed that essential genes to LUAD not only defined patients with different survival rates, but also refined preexisting subtypes.

19.
BMC Med ; 19(1): 59, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33627136

RESUMEN

BACKGROUND: Long noncoding (lnc)RNAs and glycolysis are both recognized as key regulators of cancers. Some lncRNAs are also reportedly involved in regulating glycolysis metabolism. However, glycolysis-associated lncRNA signatures and their clinical relevance in cancers remain unclear. We investigated the roles of glycolysis-associated lncRNAs in cancers. METHODS: Glycolysis scores and glycolysis-associated lncRNA signatures were established using a single-sample gene set enrichment analysis (GSEA) of The Cancer Genome Atlas pan-cancer data. Consensus clustering assays and genomic classifiers were used to stratify patient subtypes and for validation. Fisher's exact test was performed to investigate genomic mutations and molecular subtypes. A differentially expressed gene analysis, with GSEA, transcription factor (TF) activity scoring, cellular distributions, and immune cell infiltration, was conducted to explore the functions of glycolysis-associated lncRNAs. RESULTS: Glycolysis-associated lncRNA signatures across 33 cancer types were generated and used to stratify patients into distinct clusters. Patients in cluster 3 had high glycolysis scores and poor survival, especially in bladder carcinoma, low-grade gliomas, mesotheliomas, pancreatic adenocarcinomas, and uveal melanomas. The clinical significance of lncRNA-defined groups was validated using external datasets and genomic classifiers. Gene mutations, molecular subtypes associated with poor prognoses, TFs, oncogenic signaling such as the epithelial-to-mesenchymal transition (EMT), and high immune cell infiltration demonstrated significant associations with cluster 3 patients. Furthermore, five lncRNAs, namely MIR4435-2HG, AC078846.1, AL157392.3, AP001273.1, and RAD51-AS1, exhibited significant correlations with glycolysis across the five cancers. Except MIR4435-2HG, the lncRNAs were distributed in nuclei. MIR4435-2HG was connected to glycolysis, EMT, and immune infiltrations in cancers. CONCLUSIONS: We identified a subgroup of cancer patients stratified by glycolysis-associated lncRNAs with poor prognoses, high immune infiltration, and EMT activation, thus providing new directions for cancer therapy.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/inmunología , Glucólisis/inmunología , MicroARNs/inmunología , ARN Largo no Codificante/genética , Microambiente Tumoral/inmunología , Femenino , Humanos , Masculino
20.
Microorganisms ; 9(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525554

RESUMEN

Urinary tract infections (UTIs) are common in clinics and hospitals and are associated with a high economic burden. Enterobacterium Klebsiella pneumoniae is a prevalent agent causing UTIs. A high prevalence of carbapenem-resistant K. pneumoniae (CRKP) has emerged recently and is continuing to increase. Seventeen urinary CRKP isolates collected at a teaching hospital in Taiwan from December 2016 to September 2017 were analyzed to elucidate their drug resistance mechanisms. Two-thirds of the isolates were obtained from outpatients. Antimicrobial susceptibility tests demonstrated multidrug resistance in all the isolates. Multilocus sequence typing analysis showed high diversity among the isolates. PCR analysis demonstrated the presence of carbapenemases in three isolates. All isolates carried at least one other extended-spectrum ß-lactamase, including TEM, DHA, and CTX-M. Fifteen isolates contained mutations in one of the outer membrane porins that were assessed. The expression levels of the acrB and/or oqxB efflux pump genes, as determined by qRT-PCR, were upregulated in 11 isolates. Six isolates might have utilized other efflux pumps or antimicrobial resistance mechanisms. These analyses demonstrated a highly diverse population and the presence of complex resistance mechanisms in urinary isolates of K. pneumoniae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...